Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Acta Pharm Sin B ; 14(4): 1726-1741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572107

RESUMO

Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.

2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621973

RESUMO

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Assuntos
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Melhoramento Vegetal , Artemisininas/análise , Aldeídos
3.
J Ethnopharmacol ; : 118195, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641080

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.

4.
Apoptosis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615304

RESUMO

Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.

5.
Huan Jing Ke Xue ; 45(5): 2525-2536, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629518

RESUMO

To evaluate the spatial and temporal distribution characteristics of ambient ozone (O3) in the Beijing-Tianjin-Hebei (BTH) Region, the land use regression (LUR) model and random forest (RF) model were used to simulate the ambient O3 concentration from 2015 to 2020. Meanwhile, all-cause, cardiovascular, and respiratory mortalities as well as economic losses attributed to O3 were also estimated. The results showed that upward trends with fluctuation were observed for ambient O3 concentration, mortalities, and economic losses attributable to O3 exposure in the BTH Region from 2015 to 2020. The areas with high O3 concentration and great changes were concentrated in the central and southwestern regions, whereas the concentration in the northern region was low, and the change degree was small. The spatial distribution of the mortalities was also consistent with the spatial distribution of O3 concentration. From 2015 to 2020, the economic losses regarding all-cause mortality and cardiovascular mortality increased in 13 cities of the BTH Region, whereas the economic losses of respiratory mortality decreased in 4 cities in the BTH Region. The results indicated that the priority areas for O3 control were not uniform. Specifically, Beijing, Tianjin, Hengshui, and Xingtai were vital areas for O3 pollution control in the BTH Region. Differentiated control measures should be adopted based on the characteristics of these target areas to decline O3 concentration and reduce health impacts and economic losses associated with O3 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Pequim , Ozônio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Cidades , China
6.
Shock ; 61(3): 375-381, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517267

RESUMO

ABSTRACT: Background. Identifying the causative pathogens of central nervous system infections (CNSIs) is crucial, but the low detection rate of traditional culture methods in cerebrospinal fluid (CSF) has made the pathogenic diagnosis of CNSIs a longstanding challenge. Patients with CNSIs after neurosurgery often overlap with inflammatory and bleeding. Metagenomic next-generation sequencing (mNGS) has shown some benefits in pathogen detection. This study aimed to investigate the diagnostic performance of mNGS in the etiological diagnosis of CNSIs in patients after neurosurgery. Methods. In this prospective observational study, we enrolled patients with suspected CNSIs after neurosurgical operations who were admitted to the intensive care unit of Beijing Tiantan Hospital. All enrolled patients' CSF was tested using mNGS and pathogen culture. According to comprehensive clinical diagnosis, the enrolled patients were divided into CNSIs group and non-CNSIs group to compare the diagnostic efficiency of mNGS and pathogen culture. Results. From December 2021 to March 2023, 139 patients were enrolled while 66 in CNSIs group and 73 in non-CNSIs. The mNGS exceeded culture in the variety and quantity of pathogens detected. The mNGS outperformed traditional pathogen culture in terms of positive percent agreement (63.63%), accuracy (82.01%), and negative predictive value (75.00%), with statistically significant differences ( P < 0.05) for traditional pathogen culture. The mNGS also detected bacterial spectrum and antimicrobial resistance genes. Conclusions. Metagenomics has the potential to assist in the diagnosis of patients with CNSIs who have a negative culture.


Assuntos
Infecções do Sistema Nervoso Central , Cuidados Críticos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Unidades de Terapia Intensiva , Infecções do Sistema Nervoso Central/diagnóstico , Hospitalização , Sensibilidade e Especificidade
7.
Clin Rheumatol ; 43(5): 1513-1520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436771

RESUMO

OBJECTIVE: Due to the complexity of drug-induced lupus (DIL) pathogenesis, more susceptibility factors need to be discovered. FAM210B is a new mitochondrial protein whose function has not been fully elucidated. This study will explore whether there is a correlation between FAM210B and the risk of DIL. METHODS: At first, we extracted three FAM210B genetic variants from the GTEx database (n = 948), and extracted their corresponding genome-wide association study (GWAS) summary statistics from DIL (101 DIL cases and 218691 controls). Then, we performed a Mendelian randomization (MR) study to evaluate the causal association of the expression of FAM210B with DIL using inverse-variance weighted (IVW), the weighted median, MR-Egger, and MR-PRESSO test. RESULTS: We successfully extracted three FAM210B single-nucleotide polymorphisms (SNPs) (rs116032784, rs34361943 and rs33923703) from the GTEx_Analysis_v8_eQTL data that can reduce FAM210B expression. The results of the MR analysis showed that genetically reduced expression of FAM210B was significantly associated with increased risk of DIL in European ancestry based on the IVW method (ß = 1.037, p = 0.001, odds ratio [OR] = 2.821, 95% confidence interval [CI]:1.495-5.322). CONCLUSION: MR analysis showed a causal relationship between FAM210B expression and the risk of DIL disease. Our results suggested that FAM210B may be a marker that can mark susceptibility of DIL in the future. It provides evidence for the study of DIL, but its specific mechanism of action in DIL needs to be further studied. Key Points •This is the first MR analysis to examine the association between FAM210B and DIL. •The findings of this study suggested that reduced FAM210B expression is associated with the increased risk of DIL. •FAM210B may be a marker that can mark susceptibility of DIL in the future.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Causalidade , Bases de Dados Factuais , Proteínas Mitocondriais , Polimorfismo de Nucleotídeo Único , Proteínas de Membrana
8.
J Environ Manage ; 356: 120750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520849

RESUMO

The nitrate denitrifying anaerobic methane oxidation-anaerobic ammonia oxidation (DAMO-anammox) can accomplish nitrogen removal and methane (CH4) reduction. This process greatly contributes to carbon emission mitigation and carbon neutrality. In this study, we investigated the electron transfer process of functional microorganisms in the iron-mediated DAMO-anammox system. Fe3+ could be bound to several functional groups (-CH3, COO-, -CH) in extracellular polymeric substance (EPS), and the functional groups bound were different at different iron concentration. Fe3+ underwent reduction reactions to produce Fe2+. Most Fe3+ and Fe2+ react with microorganisms and formed chelates with EPS. Three-dimensional fluorescence spectra showed that Fe3+ affected the secretion of tyrosine and tryptophan, which were essential for cytochrome synthesis. The presence of Fe3+ accelerated c-type cytochrome-mediated extracellular electron transfer (EET), and when more Fe3+ existed, the more cytochrome C expressed. DAMO archaea (M. nitroreducens) in the system exhibited a high positive correlation with the functional genes (resa and ccda) for cytochrome c synthesis. Some denitrifying microorganisms showed positive correlations with the abundance of riboflavin. This finding showed that riboflavin secreted by functional microorganisms acted as an electron shuttle. In addition, DAMO archaea were positively correlated with the hair synthesis gene pily1, which indicated that direct interspecies electron transfer (DIET) may exist in the iron-mediated DAMO-anammox system.


Assuntos
Compostos de Amônio , Ferro , Oxidação Anaeróbia da Amônia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Citocromos c/metabolismo , Elétrons , Desnitrificação , Anaerobiose , Archaea , Oxirredução , Metano , Carbono/metabolismo , Riboflavina/metabolismo , Reatores Biológicos , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Nitritos/metabolismo
9.
Opt Lett ; 49(5): 1205-1208, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426974

RESUMO

We propose a novel, to the best of our knowledge, scheme for dual vector millimeter-wave (mm-wave) signal generation and transmission, based on optical carrier suppression (OCS) modulation, precoding, and direct detection by a single-ended photodiode (PD). At the transmitter side, two independent vector radio frequency (RF) signals with precoding, generated via digital signal processing (DSP), are used to drive an in-phase/quadrature (I/Q) modulator operating at the optical OCS modulation mode to simultaneously generate two independent frequency-doubling optical vector mm-wave signals, which can reduce the bandwidth requirement of transmitter's components and enhance spectral efficiency. With the aid of the single-ended PD and subsequent DSP at the receiver side, two independent frequency-doubling vector mm-wave signals can be separated and demodulated without data error. Based on our proposed scheme, we experimentally demonstrate the generation, transmission, and detection of 2-Gbaud 30-GHz quadrature-phase-shift-keying (QPSK) and 2-Gbaud 46-GHz QPSK signals over 10-km single-mode fiber-28 (SMF-28) and 1-m wireless transmission. The results indicate that the bit-error ratio (BER) of the dual vector mm-wave signals can each reach the hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3.

10.
Appl Opt ; 63(7): 1881-1887, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437294

RESUMO

The probabilistic shaping (PS) technique is a key technology for fiber optic communication systems to further approach the Shannon limit. To solve the problem that nonlinear equalizers are ineffective for probabilistic shaping optical communication systems with non-uniform distribution, a distribution alignment convolutional neural network (DACNN)-aided nonlinear equalizer is proposed. The approach calibrates the equalizer using the probabilistic shaping prior distribution, which reduces the training complexity and improves the performance of the equalizer simultaneously. Experimental results show nonlinear equalization of 120 Gb/s PS 64QAM signals in a 375 km transmission scenario. The proposed DACNN equalizer improves the receiver sensitivity by 2.6 dB and 1.1 dB over the Volterra equalizer and convolutional neural network (CNN) equalizer, respectively. Meanwhile, DACNN converges with fewer training epochs than CNN, which provides great potential for mitigating the nonlinear distortion of PS signals in fiber optic communication systems.

11.
Appl Opt ; 63(4): 1079-1086, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437406

RESUMO

A two-dimensional signal constellation scheme for binary uniform memoryless source transmission in optical fiber channels is studied in this paper. In geometric shaping (GS), optimization algorithms are usually used to change the overall position of constellation points while maintaining the probability of constellation points unchanged. Different optimization functions are used to allocate the position of constellation symbols, thereby improving constellation performance. A 16 quadrature amplitude modulation (QAM) optical signal generation scheme based on weighted optimal Euclidean distance is proposed in this paper. In order to obtain the best constellation diagram and increase the shaping gain, the weighted optimal Euclidean distance that can minimize the bit error rate (BER) over multiple iterative optimizations is used as the objective function. On the one hand, the proposed 16QAM optical signal generation scheme based on weighted optimal Euclidean distance always outperforms the uniform square 16QAM and the uniform circle 16QAM schemes in the back to back (BTB) transmission. On the other hand, after analyzing the simulation demonstration in a 50GBaud coherent optical communication system over 3000 km, results demonstrate that the optical signal to noise ratio (OSNR) performance of this system is better than that of the uniform square 16QAM and the uniform circle 16QAM, which is improved by 0.52 dB and 0.85 dB, respectively. In addition, the proposed 16QAM system increases the transmission distance by 989 km and 741 km, respectively, compared to the other two systems. The performance confirms that the proposed novel 16QAM scheme, to the best of our knowledge, can effectively improve the reliability and transmission distance. Therefore, the proposed scheme has a certain development prospect in the future long-distance transmission of high-speed optical fiber communication.

12.
JAAD Int ; 15: 78-83, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440298

RESUMO

Background: Generalized pustular psoriasis (GPP) is a rare skin disease characterized by episodes of widespread sterile pustules. Methods: A retrospective cohort study using data from the US IBM MarketScan Commercial and Optum Clinformatics Data Mart databases between October 1, 2015 and March 31, 2020 was performed to describe adherence and persistence to biologics in patients with GPP. Patients were aged ≥18 years with newly diagnosed GPP (International Classification of Diseases code L40.1) and had ≥1 inpatient or ≥2 outpatient claims. Results: Biologics were dispensed to 110 of 502 (22%) and 73 of 528 (14%) patients from MarketScan and Optum databases, respectively. The mean proportion of days covered (PDC) (range) was similar in both databases (MarketScan, 65% [8%-100%]; Optum, 59% [8%-99%]), and good adherence (≥80% PDC) was uncommon (MarketScan, 36%; Optum, 24%). Mean (standard deviation) persistence was similar in both databases (MarketScan, 287 [122] days; Optum, 261 [134] days). In Optum, the mean PDC was similar between age categories; good adherence was more common in patients aged 18 to 64 years (28%) versus ≥65 years (13%). Mean persistence was longer in patients aged 18 to 64 years (267 days) versus ≥65 years (242 days). Conclusions: Overall, adherence and persistence were generally poor and varied according to the biologic class, database, and age. Improving adherence may help improve GPP treatment outcomes.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38381798

RESUMO

Superconducting states onsetting at moderately high temperatures have been observed in epitaxially stabilized RENiO2-based thin films. However, recently, it has also been reported that superconductivity at high temperatures is observed in bulk La3Ni2O7-δ at high pressure, opening further possibilities for study. Here we report the reduction profile of La3Ni2O7 in a stream of 5% H2/Ar gas and the isolation of the metastable intermediate phase La3Ni2O6.45, which is based on Ni2+. Although this reduced phase does not superconduct at ambient or high pressures, it offers insights into the Ni-327 system and encourages future study of nickelates as a function of oxygen content.

14.
J Integr Plant Biol ; 66(4): 700-708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409933

RESUMO

The high-affinity potassium transporters (HKTs), selectively permeable to either Na+ alone or Na+/K+, play pivotal roles in maintaining plant Na+/K+ homeostasis. Although their involvement in salt tolerance is widely reported, the molecular underpinnings of Oryza sativa HKTs remain elusive. In this study, we elucidate the structures of OsHKT1;1 and OsHKT2;1, representing two distinct classes of rice HKTs. The dimeric assembled OsHKTs can be structurally divided into four domains. At the dimer interface, a half-helix or a loop in the third domain is coordinated by the C-terminal region of the opposite subunit. Additionally, we present the structures of OsHKT1;5 salt-tolerant and salt-sensitive variants, a key quantitative trait locus associated with salt tolerance. The salt-tolerant variant of OsHKT1;5 exhibits enhanced Na+ transport capability and displays a more flexible conformation. These findings shed light on the molecular basis of rice HKTs and provide insights into their role in salt tolerance.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Potássio/metabolismo , Proteínas de Membrana Transportadoras , Sódio/metabolismo , Cátions , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Circulation ; 149(17): 1354-1371, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38314588

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS: Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS: We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS: Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.

17.
Phys Rev Lett ; 132(6): 060602, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394561

RESUMO

The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX interactions. Consequently, effective ZZ or XZ interactions are only constructed either by temporarily populating higher-energy states, or by exploiting perturbative effects under microwave driving. Instead, we propose and demonstrate an inductive coupling scheme, which offers a wide selection of native qubit-qubit interactions for fluxonium. In particular, we leverage a built-in, flux-controlled ZZ interaction to perform qubit entanglement. To combat the increased flux-noise-induced dephasing away from the flux-insensitive position, we use a continuous version of the dynamical decoupling scheme to perform noise filtering. Combining these, we demonstrate a 20 ns controlled-z gate with a mean fidelity of 99.53%. More than confirming the efficacy of our gate scheme, this high-fidelity result also reveals a promising but rarely explored parameter space uniquely suitable for gate operations between fluxonium qubits.

18.
Animal Model Exp Med ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400589

RESUMO

BACKGROUND: Nuclear receptor-binding SET domain 2 (NSD2) is a histone methyltransferase, that catalyzes dimethylation of lysine 36 of histone 3 (H3K36me2) and is associated with active transcription of a series of genes. NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prognosis in several types of tumors. METHODS: We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells. We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer. The development of colorectal tumors were investigated using post-necropsy quantification, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS: Compared with wild-type (WT) control mice, NSD2fl/fl -Vil1-Cre mice exhibited significantly decreased tumor numbers, histopathological changes, and cytokine expression in colorectal tumors. CONCLUSIONS: Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.

19.
Opt Lett ; 49(3): 430-433, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300034

RESUMO

Stochastic nonlinear impairment is the primary factor that limits the transmission performance of high-speed orbital angular momentum (OAM) mode-division multiplexing (MDM) optical fiber communication systems. This Letter presents a low-complexity adaptive-network-based fuzzy inference system (LANFIS) nonlinear equalizer for OAM-MDM intensity-modulation direct-detection (IM/DD) transmission with three OAM modes and 15 wavelength division multiplex (WDM) channels. The LANFIS equalizer could adjust the probability distribution functions (PDFs) of the distorted pulse amplitude modulation (PAM) symbols to fit the statistical characteristics of the WDM-OAM-MDM transmission channel. Therefore, although the transmission symbols in the WDM-OAM-MDM system are subjected to a stochastic nonlinear impairment, the proposed LANFIS equalizer can effectively compensate the distorted signals. The proposed equalizer outperforms the Volterra equalizer with improvements in receiver sensitivity of 2, 1.5, and 1.3 dB for three OAM modes at a wavelength of 1550.12 nm, respectively. It also outperforms a CNN equalizer, with improvements in receiver sensitivity of 1, 0.5, and 0.3 dB, respectively. Moreover, complexity reductions of 67%, 74%, and 99.9% are achieved for the LANFIS equalizer compared with the Volterra, CNN, and ANFIS equalizers, respectively. The proposed equalizer has high performance and low complexity, making it a promising candidate for a high-speed WDM-OAM-MDM system.

20.
J Colloid Interface Sci ; 663: 358-368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412721

RESUMO

Ligand functionalization is an effective way to endow Metal-organic frameworks (MOF) with versatility for multiple applications by introducing or displaying substituents without changing the origin framework. In this work, the original MIL-101(Fe) was modified by functional groups, including -NH2, -NO2, -CH3, and -Cl substituents. The Bader charge results and electron localization function (ELF) quantitatively indicated that the functional ligands with different properties can regulate the electron structure of transition-metal centers through interface-charge redistribution. Accompanying the higher adsorption and utilization rate of peroxymonosulfate (PMS), more than 96% of acetaminophen (APAP) was degraded with a mineralization rate of 40.17% under the NH2-BDC/PMS system. In terms of mechanism, the amino group not only accelerated the regeneration of Fe(II) via the NCFe electron-transfer path, but also stimulated the appearance of high-valent Fe species. Meanwhile, the degradation pathways of APAP were proposed by integrating the results of liquid chromatograph-mass spectrometry (LC-MS) and Frontier molecular-orbital theory. Finally, the NH2-BDC/PMS system reveals long-term stability, nonselectivity, low biotoxicity as well as secondary pollution for pollutant degradation, which is a considered candidate for further environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...